
Research Article
An Optimal Seed Based Compression Algorithm for
DNA Sequences

Pamela Vinitha Eric,1 Gopakumar Gopalakrishnan,2 and Muralikrishnan Karunakaran2

1Department of Information Science and Engineering, Rajiv Gandhi Institute of Technology, Bangalore 560032, India
2Department of Computer Science and Engineering, National Institute of Technology Calicut, Kerala 673601, India

Correspondence should be addressed to Pamela Vinitha Eric; pamela.vinitha@gmail.com

Received 28 November 2015; Revised 9 May 2016; Accepted 19 June 2016

Academic Editor: Frank M. You

Copyright © 2016 Pamela Vinitha Eric et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method
that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in
DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring
that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing
lossless DNA sequence compression algorithms.

1. Introduction

There is an exponential increase in the amount of DNA being
sequenced, thus leading to problems in storage, comprehen-
sion, and transmission.The cost of storage has been reducing
dramatically in the past few years, but the exponential growth
in the amount of DNA being sequenced leads to tremendous
increase in the amount of data that needs to be stored online
thereby making storage one of the biggest cost elements.
Another challenge faced is how to make sense out of this
huge mass of data. With whole genomes, we now have to
deal with millions or billions of base pairs. When we have
a database of such genomes, as is typically the case, the
problem becomes even more compounding. Thus, new and
more effective techniques are needed for the compression of
biological sequence data, particularly DNA sequences.

DNA sequences are expected to be nonrandom and hence
it is possible to remove redundancy, resulting in compression.
It is estimated that more than 50% of the human genome
is repeat DNA [1]. Compression will solve the issues related
to storage and also improve the understanding of these
sequences. Chen et al. [2] showed that compressibility is a
goodmeasurement of relatedness between sequences and can
be effectively used in sequence alignment and evolutionary
tree construction. According to Allison et al. [3] compression

of DNA sequences also results in the intelligent analysis of
these sequences. Compression also plays an important role
in efficient sequence classification [4].

DNA sequences consist of four nucleotide bases, A (ade-
nine), C (cytosine), G (guanine), and T (thymine), and two
bits are sufficient to represent each of these nucleotide bases.
Moreover the repeats found inDNA sequences are not always
exact; they can be of different types like approximate, reverse,
complementary, reverse complementary, and tandem. Also
these repeats are long and less frequent. Traditional text
compression algorithms are only effective in capturing short
and frequent repeats; hence using them to compress DNA
sequences often results in expansion of the same. Therefore
finding all the different types of repeats in a DNA sequence
and encoding them in order to achieve a good compression
ratio is a challenging task.

This paper proposes a seed based algorithm which uses
a substitution method that is in line with the LempelZiv
[5, 6] compression scheme to compress DNA sequences.
The proposed algorithm captures all the various types of
repeats like exact, tandem, approximate, reverse, comple-
mented, and reverse complemented and stores them onto
an offline dictionary. These repeats are then removed from
the original sequence to form the final parsed sequence.
The offline dictionary along with the final parsed sequence

Hindawi Publishing Corporation
Advances in Bioinformatics
Volume 2016, Article ID 3528406, 7 pages
http://dx.doi.org/10.1155/2016/3528406

http://dx.doi.org/10.1155/2016/3528406


2 Advances in Bioinformatics

forms the compressed sequence. Mismatches that give good
compression gain are tolerated and recorded along with the
repeat substrings in the offline dictionary.

This paper is organized as follows. Section 2 reviews the
various DNA compression algorithms. Section 3 describes
the proposed method and Section 4 analyzes the results
obtained. This is followed by conclusion in Section 5.

2. Related Work

Compression of biological sequences can be either hori-
zontal or vertical as proposed by Grumbach and Tahi [7,
8]. Horizontal mode compresses a biological sequence by
making use of information containedwithin it, like references
to the substrings, whereas vertical mode takes a set of
biological sequences and compresses each sequence based
on the information derived from this set. Horizontal mode
is of interest for the reduction of storage and transmission
costs [9] and uses compression techniques like substitution,
statistical, or a combination of these two [10]. Statistical
compression uses a statistical model of the data, comprised of
variable sized codes, and the quality of compression obtained
depends on the data model [11]. Substitution or dictionary
based method selects several strings of symbols that occur
frequently and encodes each string as a token which is a
pointer to the string in a dictionary. The dictionary itself can
be static or dynamic. Compression algorithms based on LZ
method use online dictionary whereas in case of methods
using offline dictionary compression occurs in two passes: the
first pass identifies all repeats and stores them in a dictionary
and the second pass encodes these repeats as pointers
to the dictionary [5, 6]. A third category of compression
is the hybrid technique which makes use of a combina-
tion of substitution and statistical techniques to compress
data.

Most of the compressionmethods available for compress-
ing biological sequences like [2, 7, 8, 12] use substitution
methods. The earliest special purpose DNA compression
algorithm found in the literature is Biocompress developed
by Grumbach and Tahi [7, 8]. They proposed Biocompress
and Biocompress 2 which detects repeats of substrings that
occurred earlier in the sequence and encodes them as length
of repeat and position of previous occurrence. They also
employ order 2 arithmetic coding to encode nonrepeat
regions. Chen et al. [12] developed DNACompress that uses
the software utility Pattern Hunter [13] to identify significant
approximate repeat regions and then encodes these repeat
regions by a pointer to their earlier occurrence.Thenonrepeat
regions are also encoded using arithmetic coding.The offline
approach by Apostolico and Lonardi [14] iteratively selects
repeated substrings for which encoding would gain maxi-
mum compression. A similar substitution approach is used
in GenCompress by Chen et al. [2] where they concentrate on
finding an optimal prefix that can be encoded economically.
Here approximate repeats are exploited. Adjeroh et al. [15, 16]
create an offline dictionary of short repeats and code all
occurrences of a given repeat with reference to the position
of that repeat in the dictionary. Cfact developed by Rivals et
al. [17] constructs a suffix tree in the first pass and uses this

data structure to search for the longest exact matching repeat
in the second pass.

A few methods like XM, CDNA, and ARM employ
statistical techniques. Expert model (XM) proposed by Cao
et al. [18] uses an order 2 Markov expert and a copy expert
to predict the probability of occurrence of a symbol. It also
employs adaptive coding for correct or incorrect predictions.
The CDNA algorithm by Loewenstern and Yianilos [19] is a
pure statistical algorithm, where the probability distribution
of each symbol is obtained by approximate partial matches
from history. Each approximate match is with a previous
subsequence having a small Hamming distance to the context
preceding the symbol to be encoded. The latter ARM algo-
rithm by Allison et al. [3] is also a pure statistical algorithm
that forms the probability of a subsequence by summing the
probabilities over all explanations as to how the subsequence
is generated.

Amethod that employs hybrid technique was introduced
by Korodi and Tabus [20, 21] where encoding is done by
using a simple normalized maximum likelihood model for
discrete regression, through reference to preceding approx-
imate matching blocks and encoding them by a first-order
context coding. In its improvement, GeNML by Korodi and
Tabus [20, 21], the DNA sequence is split into fixed size
blocks. The bit mask is encoded using a probability distri-
bution estimated by the normalized maximum likelihood of
similarity between the regressor and the block. Matsumoto
et al. [22] use a combination of LZ [5, 6] and CTW [23].
They first identify approximate repeat regions using hash and
dynamic programming and then replace these repeat regions
with an offset and length. Edit operations are encoded using
arithmetic coding and nonrepeat areas by an order 32 context
tree weighting.

3. Optimal Seed Based Compression Algorithm
for DNA Sequences

The proposed method consists of a seed based algorithm that
identifies potentially good matches. The matching substrings
so identified are later extended in both the directions, that is,
to the left and right.

Let 𝑆 be the DNA sequence to be compressed and 𝑙 the
length of the DNA sequence. 𝑆

𝑖
represents the 𝑖th symbol

of the given DNA sequence, where 1 ≤ 𝑖 ≤ 𝑙 and 𝑆
𝑖,𝑗

is a
substring of 𝑆 of length 𝑘 where 𝑘 = 𝑗 − 𝑖 + 1. The seed
𝑆
𝑎,𝑏

is also a substring of 𝑆 of length 𝑘. The initial seed is
𝑆
1,𝑘

and the first substring (𝑆
𝑖,𝑗
) to be matched is 𝑆

𝑘+1,𝑘+𝑘
.

The values of (𝑖, 𝑗) are incremented until a repeat substring is
identified such that 𝑆

𝑎,𝑏
= 𝑆
𝑖,𝑗
. If no such matching substring

is encountered, (𝑎, 𝑏) are incremented and the search is
continued until 𝑆

𝑎,𝑏
= 𝑆
𝑖,𝑗

for some [(𝑎, 𝑏), (𝑖, 𝑗)], where 𝑖
ranges from 𝑏 + 1 to 𝑙 − 𝑘 and 𝑗 from 𝑏 + 𝑘 to 𝑙. Now the
length of the match 𝑛

0
is initialized to 𝑘 and 𝑚, the number

of mismatches, is initialized to 0.
The repeat substring 𝑆

𝑖,𝑗
and the seed 𝑆

𝑎,𝑏
are extended

and compared.The extension is done first to the left and then
to the right. The length of the match 𝑛

0
is incremented for

each symbol matched. If a mismatch occurs while extend-
ing the repeat substring and the seed, decision regarding



Advances in Bioinformatics 3

Table 1: Structure of the offline dictionary.

Extended seed Type of repeat Position of repeat Length Mismatch details

AATAACTTG Approx 5 9
Reverse 20 9 (1 10 01, 8 10 00)

AACTTG Reverse 36 6
Approx 73 7 (4 01 10)

permitting this mismatch is made, based on the total number
of mismatches until then and whether permitting this mis-
match would result in a compression gain. If𝑚 is greater than
the threshold, repeat extension in the direction in which the
mismatch occurred is temporarily terminated. Extension to
the left is also stopped whenever there is an overlap between
the extended seed and the extended repeat substring.

Assume that the substrings 𝑆
𝑐,𝑝

and 𝑆
𝑑,𝑞

are the extended
repeat and the extended seed so obtained. An offline dic-
tionary, as shown in Table 1, stores the extended seed 𝑆

𝑑,𝑞
,

position of occurrence of repeat 𝑐, length of the repeat 𝑛
0
, type

of repeat, and the details of mismatches that have occurred if
any. 𝑆
𝑐,𝑝

is then removed from 𝑆 and the remaining symbols of
𝑆 are concatenated to form the next sequence 𝑆

𝑝
. The process

is repeated on sequence 𝑆
𝑝
until all approximate repeats of

𝑆
𝑑,𝑞

are identified and stored in the offline dictionary. This
offline dictionary is similar to the one created by Adjeroh et
al. [15, 16, 25].

Finally the extended seed 𝑆
𝑑,𝑞

is removed from 𝑆
𝑝
and

the remaining symbols of 𝑆
𝑝
are concatenated to form the

new sequence 𝑆. The position of the extended seed 𝑆
𝑑,𝑞
, 𝑑, is

recorded as the last entry under that seed.
The above process is repeated on the new sequence 𝑆

until all the exact and approximate repeats are identified and
removed from the sequence and the remaining nonrepeat
regions of the sequence are concatenated to form the final
parsed sequence. This process along with an example is
depicted in Figure 1. The offline dictionary along with the
final parsed sequence (the original sequence from which all
seeds and repeats have been removed) forms the compressed
sequence. The final parsed sequence is further compressed
using adaptive arithmetic coding. The extended seed entries
in the offline dictionary are also encoded using arithmetic
coding.

3.1. Encoding of Mismatches. Theproposedmethod identifies
all significant approximate repeats in the DNA sequence
and stores them onto an offline dictionary. All approximate
repeats havemismatches which are encoded andwritten onto
the offline dictionary. Mismatches occur due tomutation and
can be defined by any of the edit operations like insertion,
deletion, or substitution of some base. The mismatch details
are recorded in the table as a triple (𝑃, 𝐸, 𝑆), where 𝑃 is
the position of mismatch within the extended seed, 𝐸 the
type of edit operation, and 𝑆 the symbol to be inserted or
substituted. When the edit operation is deletion, the last field
of the triple may be omitted. The same representation is also
used in DNACompress [12] and GenCompress [2]. The edit
operations are encoded as 00 insertion, 01 deletion, and 10
substitution and the bases A, C, G, and T are encoded as
00, 01, 10, and 11, respectively. Suppose that the seed is the

substring GCACTTACT and the approximate repeat found
is GCACTTTCT. Here the symbol A which occurs at the 7th
position in the seed has been substituted with the symbol T in
the repeat. This is represented by a triple of 7 bits as (1111011).

3.2. Determining the Threshold. Mismatches are allowed
while extending the repeats in both directions but the number
of such mismatches should not exceed a predetermined
threshold. When the predetermined threshold is exceeded
temporarily suspend extension of seed and repeat in that
direction until the length of the repeat and seed has increased
to such an extent that extension of repeat in the suspended
direction becomes feasible again. But any mismatch is
tolerated if and only if allowing such a mismatch results
in a compression gain. The threshold value is determined
dynamically with respect to the length of the extended
repeat. Experimental results show that the total number of
mismatches allowed at any instance should never exceed
log
2
(𝑛
0
); here (𝑛

0
) is the length of the extended repeat.

3.3. Calculation of Compression Ratio. It takes at the most 2
bits to encode each symbol of a DNA sequence.The objective
of DNA compression is to bring down the bits needed to
represent each base to less than 2. In the proposed method
the output comprises the offline dictionary along with the
final parsed sequence and the compression ratio specifies the
bits per symbol (bps) and can be calculated by the following
formula [16]:

Compression ratio =
(Cost of output sequence)
(Length of input sequence)

=
(Cost of dictionary + Cost of parsed sequence)

(Length of input sequence)
.

(1)

The cost of a variable is the number of bits required
to represent it. The term vocabulary refers to the identified
repeats without reference to their specific locations in the
sequence. The size of the dictionary denoted as 𝑛 gives the
number of distinct repetitions in the dictionary.The length of
the 𝑖th seed is denoted by 𝑙(𝑖) and the number of repetitions
of 𝑖th seed by 𝑘(𝑖). If the position of the 𝑗th occurrence of
repeat pattern 𝑖 is given as 𝑃(𝑖, 𝑗) and mismatch in the 𝑗th
occurrence of repeat pattern 𝑖 as𝑀(𝑖, 𝑗), then cost of positions
and mismatch details can be given as

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

[log (𝑃
𝑖,𝑗
)] +

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

𝑀
𝑖,𝑗
+

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

log (𝑙 (𝑖))

+

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

2.

(2)



4 Advances in Bioinformatics

No

No
Yes

Yes

No

Start

Repeat 
exists?

Extend repeat 
and seed

Does mismatch result in 
compression gain?

Add repeat details to 
dictionary

Stop

Seed analysis
over?

 Any more
seeds? 

No

Yes

Yes

of length k

Select seed as 
Sa+1,b+1

Remove seed

Add seed
details to 
dictionary

to form Sp

Remove repeat to form Sp

Check for
repeats

Seed: ATAAC and TGAGT

After extension:

Parsed sequence: AGACTTACTTAAAC

Offline dictionary:

Extended seed Length Type of repeat Position Mismatch details

AATAACTTGA 10 Approx 31
7

(1,10,01; 8,10,00)

TGAGTAAGGT 10 Exact 42
20

—
—

—

AGACTTAATAACTTGAACTTGAGTAAGGTTCATAACTAGTATGAGTAAGGTAAC

AGACTTAATAACTTGAACTTGAGTAAGGTTCATAACTAGTATGAGTAAGGTAAC

←S1 → ←S2→ ← R1 → ←R2→

← ES1 → ← ES2 → ← → ← →ER2ER1

S1 and S2 are seeds, R1 and R2 are repeats, ES1 and ES2 are extended seeds, and
ER1 and ER2 are extended repeats.

Select seed Sa,b

Figure 1: The process flow of the seed based compression method followed by an example sequence.

Here log(𝑙(𝑖)) is the number of bits required to represent
𝑙(𝑖) and the last term gives the number of bits needed to
represent the type of repetition of each repeat.

The cost of dictionary is the sum of the cost of vocabulary
and cost of positions and mismatch details:

Cost of vocabulary
= 2 ∗ (Sum of length of extended seeds)

= 2 ∗

𝑛

∑

𝑖=1

𝑙 (𝑖) .

(3)



Advances in Bioinformatics 5

Table 2: Comparison of compression ratios of the proposed method against existing methods [2, 8, 12, 18, 19, 21, 22, 24].

Sequence Length CDNA GeMNL Bioc CTW + LZ GenC DNAC DNAP XM Proposed seed based method
HUMDYSTROP 38,770 1.93 1.9085 1.9262 1.9175 1.9231 1.9116 1.9088 1.9031 1.8624
HUMGHCSA 66,496 0.95 1.0089 1.3072 1.0972 1.0969 1.0272 1.639 0.9828 1.0156
HUMHBB 73,308 1.77 — 1.8800 1.8082 1.8204 1.7897 1.7771 1.7513 1.7364
HUMHDABCD 58,863 1.67 1.7059 1.8770 1.8218 1.8192 1.7951 1.7394 1.6671 1.6237
HUMHPRTB 56,832 1.72 1.7639 1.9066 1.8433 1.8466 1.8165 1.7886 1.7361 1.688
MPOMTCG 1,86,609 1.87 1.8822 1.9378 1.9000 1.9058 1.8920 1.8932 1.8768 1.763
VACCG 1,91,735 1.81 1.7644 1.7614 1.7616 1.7614 1.7580 1.7583 1.6749 1.6434

Therefore

Cost of dictionary = 2 ∗
𝑛

∑

𝑖=1

𝑙 (𝑖) +

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

[log (𝑃
𝑖,𝑗
)]

+

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

𝑀
𝑖,𝑗
+

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

log (𝑙 (𝑖))

+

𝑛

∑

𝑖=1

𝑘(𝑖)

∑

𝑗=1

2.

(4)

The final parsed sequence 𝑆final is the sequence from
which all the repeats have been removed. The number of bits
to represent 𝑆final is 2 ∗ 𝑙(𝑆final). Therefore

Compression ratio

=

2 ∗ ∑
𝑛

𝑖=1
𝑙 (𝑖) + ∑

𝑛

𝑖=1
∑
𝑘(𝑖)

𝑗=1
[log (𝑃

𝑖,𝑗
)] + ∑

𝑛

𝑖=1
∑
𝑘(𝑖)

𝑗=1
𝑀
𝑖,𝑗
+ ∑
𝑛

𝑖=1
∑
𝑘(𝑖)

𝑗=1
log (𝑙 (𝑖)) + ∑𝑛

𝑖=1
∑
𝑘(𝑖)

𝑗=1
2 + 2 ∗ 𝑙 (𝑆final)

(Length of input sequence)
.

(5)

4. Results

The seed based compression algorithm was experimen-
tally verified on a set of DNA sequences in FASTA for-
mat as the input. The method was tested on the same
standard benchmark data used in [2, 7, 12, 18, 22].
These standard sequences include human growth hormone
(HUMGHCSA), human DNA sequence (HUMHDABCD),
vaccinia virus Copenhagen complete genome (VACCG),
Marchantia polymorpha mitochondrion complete genome
(MPOMTCG), human beta globin region on chromosome
11 (HUMHBB), Homo sapiens dystrophin gene (HUMDYS-
TROP), and human hypoxanthine phosphoribosyltrans-
ferase gene (HUMHPRTB).

The algorithm was tested on this data set for various
seed lengths “𝑘,” to decide upon an optimum “𝑘” value
for the compression. The seed length “𝑘” was varied from
5 to 11 on various runs of the data set and the best “𝑘”
value was inferred to be 8 as this gives better compression
ratio than smaller “𝑘” values. BLAST [26], being another
bioinformatics local alignment search tool, also uses 11 as
the standard seed length whereas SENSEI [27] uses 8 as
the seed length. Also, it was noticed that even though
time complexity increases when 𝑘 was incremented further
a substantial improvement in compression ratio does not
occur to warrant such an increase. Thus the “𝑘” value was
inferred to be 8. A graph comparing compression ratios
against varying 𝑘 values for different sequences is shown in
Figure 2.

Any mismatch is tolerated if and only if allowing such a
mismatch results in a compression gain. To ensure compres-
sion gain amismatch is allowed only if the next few characters
are an exact match. The results of testing for different values
showed that ensuring the next three characters are exact
matches gives good compression ratio.The permitted thresh-
old for the number of mismatches allowed was varied from
log
2
𝑘 to log

2
log
2
𝑘 and it was found that log

2
𝑘 gives better

compression. The graph depicting the compression ratio
achieved when the threshold for the number of mismatches
allowed is log

2
𝑘 and log

2
log
2
𝑘 is shown in Figure 3.

The tabulated result of comparison of compression ratios
of the proposed seed based method against other existing
algorithms is shown in Table 2.

The execution time taken by few of the reviewedmethods
for the benchmark sequences was determined after executing
them on amachine with a quad core processor having a clock
speed of 2.60GHz, 8GB RAM, and 64-bit operating system.
The execution time taken by the reviewed methods is given
in Table 3.

Decompression. Algorithm 1 was implemented and the result
of decompression was verified to ensure that the compression
method proposed is indeed lossless.

5. Conclusion

A substitutional compression algorithm for DNA sequence is
proposed. On extensive testing, the optimum seed length for



6 Advances in Bioinformatics

Table 3: Time taken for execution.

Sequence Length DNACompress (sec) GenCompress (sec) Time taken by seed based method (sec)
HUMDYSTROP 38,770 0.125 0:00:45 1.5
HUMGHCSA 66,496 0.094 874 2.5
HUMHBB 73,308 0.125 NA 2.8
HUMHDABCD 58,863 0.125 104 2.2
HUMHPRTB 56,832 0.124 90 2
MPOMTCG 1,86,609 0.124 781 3.5
VACCG 1,91,735 0.219 1239 4

Begin
Read number of seeds (𝑛

𝑠
) from table.

While ((𝑛
𝑠
) > 0) do

Begin
Read the 𝑠𝑒𝑒𝑑 at 𝑛

𝑠
along with the 𝑛

𝑟
(no. of repeats) for that seed.

Store 𝑠𝑒𝑒𝑑 as Extended seed.
Read the position of seed that is the last entry under that seed taken as 𝑠𝑒𝑒𝑑𝑝𝑜𝑠.
Insert the 𝑠𝑒𝑒𝑑 into sequence at 𝑠𝑒𝑒𝑑𝑝𝑜𝑠.
Decrement (𝑛

𝑟
) by 1

While ((𝑛
𝑟
) > 0) do

Begin
Extended seed = seed
Read position and type of repeat at (𝑛

𝑟
)

Read the corresponding mismatch details.
Make necessary changes to the extended seed, based on type of repeat and mismatch details.
Insert this modified extended seed into the sequence at the position specified.
Decrement (𝑛

𝑟
) by 1

End
Decrement (𝑛

𝑠
) by 1

End
Output decompressed sequence.

End

Algorithm 1: Decompression algorithm.

HUMDYSTROP HUMGHCSA
VACCG HUMHBB
HUMHDABCD MPOMTCG
HUMHPRTB

6 7 8 9 10 11 125
1

1.5

2

2.5

Figure 2: Graph comparing compression ratios against var-
ying 𝑘 values for different sequences; 𝑥-axis : “𝑘” value; 𝑦-
axis : compression ratio.

the method was decided to be 8. As seen from the results,
it is observed that the proposed method performs with
compression ratios comparable to the existing algorithms and

6 7 8 9 10 11 125
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3

log k
log log k

Figure 3: Graph comparing compression ratios of HUMDYSTROP
against varying 𝑘 values and the threshold for the number of
mismatches allowed being log 𝑘 and log log 𝑘. 𝑥-axis : “𝑘” value; 𝑦-
axis : compression ratio.

even better for a few standard sequences. Further the speed
of execution can be improved by incorporating any known
methods of string comparison like suffix trees or bitwise XOR



Advances in Bioinformatics 7

operation as used in SENSEI [27] in the initial phase while
looking for exact seed matches.

Competing Interests

The authors declare that they have no competing interests.

References

[1] E. S. Lander, L. M. Linton, B. Birren et al., “Initial sequencing
and analysis of the human genome,” Nature, vol. 409, no. 6822,
pp. 860–921, 2001.

[2] X. Chen, S. Kwong, and M. Li, “Compression algorithm for
DNA sequences and its applications in genome comparison,”
in Proceedings of the 4th Annual International Conference on
Computational Molecular Biology (RECOMB ’00), p. 107, ACM,
Tokyo, Japan, April 2000.

[3] L. Allison, L. Stern, T. Edgoose, and T. I. Dix, “Sequence
complexity for biological sequence analysis,” Computers and
Chemistry, vol. 24, no. 1, pp. 43–55, 2000.

[4] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards
parameter-free data mining,” in Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 206–215, August 2004.

[5] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Transactions on InformationTheory, vol. 23,
no. 3, pp. 337–343, 1977.

[6] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE Transactions on InformationTheory,
vol. 24, no. 5, pp. 530–536, 1978.

[7] S. Grumbach and F. Tahi, “Compression of DNA sequences,” in
Proceedings of the IEEE Symposium on Data Compression, pp.
340–350, Snowbird, Utah, USA, 1993.

[8] S. Grumbach and F. Tahi, “A new challenge for compression
algorithms: genetic sequences,” Information Processing and
Management, vol. 30, no. 6, pp. 875–886, 1994.

[9] R. Giancarlo, D. Scaturro, and F. Utro, “Textual data compres-
sion in computational biology: a synopsis,” Bioinformatics, vol.
25, no. 13, pp. 1575–1586, 2009.

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory,
John Wiley & Sons, New York, NY, USA, 2012.

[11] D. Salomon, Data Compression: The Complete Reference,
Springer Science and Business Media, 2004.

[12] X. Chen, M. Li, B. Ma, and J. Tromp, “DNACompress: fast and
effective DNA sequence compression,” Bioinformatics, vol. 18,
no. 12, pp. 1696–1698, 2002.

[13] B. Ma, J. Tromp, and M. Li, “PatternHunter: faster and more
sensitive homology search,” Bioinformatics, vol. 18, no. 3, pp.
440–445, 2002.

[14] A. Apostolico and S. Lonardi, “Compression of biological
sequences by greedy off-line textual substitution,” inProceedings
of the Data Compression Conference (DDC ’00), pp. 143–152,
March 2000.

[15] D. Adjeroh and F. Nan, “On compressibility of protein
sequences,” in Proceedings of the Data Compression Conference
(DCC ’06), 10 pages, Snowbird, Utah, USA, March 2006.

[16] D. Adjeroh, Y. Zhang, A. Mukherjee, M. Powell, and T.
Bell, “DNA sequence compression using the Burrows-Wheeler
Transform,” in Proceedings of the IEEE Computer Society Bioin-
formatics Conference, Computer Society, vol. 1, pp. 303–313,
2002.

[17] É. Rivals, M. Dauchet, J. P. Delahaye, and O. Delgrange,
“Compression and genetic sequence analysis,” Biochimie, vol.
78, no. 5, pp. 315–322, 1996.

[18] M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple
statistical algorithm for biological sequence compression,” in
Proceedings of the Data Compression Conference (DCC ’07), pp.
43–52, IEEE, Snowbird, Utah, USA, March 2007.

[19] D. Loewenstern and P. N. Yianilos, “Significantly lower entropy
estimates for naturalDNA sequences,” Journal of Computational
Biology, vol. 6, no. 1, pp. 125–142, 1999.

[20] G. Korodi and I. Tabus, “An efficient normalized maximum
likelihood algorithm for DMA sequence compression,” ACM
Transactions on Information Systems, vol. 23, no. 1, pp. 3–34,
2005.

[21] J. I. Myung, D. J. Navarro, and M. A. Pitt, “Model selection
by normalized maximum likelihood,” Journal of Mathematical
Psychology, vol. 50, no. 2, pp. 167–179, 2006.

[22] T. Matsumoto, K. Sadakane, and H. Imai, “Biological sequence
compression algorithms,” Genome Informatics, vol. 11, pp. 43–
52, 2000.

[23] F.M. J.Willems, Y.M. Shtarkov, and T. J. Tjalkens, “The context-
tree weighting method: basic properties,” IEEE Transactions on
Information Theory, vol. 41, no. 3, pp. 653–664, 1995.

[24] B. Behzadi and F. Le Fessant, “DNA compression challenge
revisited: a dynamic programming approach,” in Proceedings of
the Annual Symposium on Combinatorial Pattern Matching, pp.
190–200, Springer, Berlin, Germany, 2005.

[25] D. Adjeroh and J. Feng, “The SCP and compressed domain
analysis of biological sequences,” in Proceedings of the IEEE
Bioinformatics Conference (CSB ’03), pp. 587–592, Stanford,
Calif, USA, August 2003.

[26] S. F. Altschul,W. Gish,W.Miller, E.W.Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal ofMolecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[27] P. Agarwal, “Compact encoding strategies for DNA sequence
similarity search,” in Proceedings of the International Conference
on Intelligent Systems for Molecular Biology (ISMB ’95), vol. 4,
pp. 211–217, 1995.


